ANSWERS!!!

Motion Graphs

1a. (Point D... has the slope of greatest magnitude... it is steepest! And the slope of a position time graph tells you the velocity)
1b. (Point B to Point D.... the magnitude of the slope of the line tangent to the curve increases between these two points)
1c. (A to B, and D to F... the magnitude of the slope of the line tangent to the curve is decreasing)
1d. (At point B, before B the slope was positive indicating a positive velocity, thus moving right.... After B the slope is negative indicating a negative velocity, thus moving left.)
1e. (B to F... the slope of the tangent line is negative, indicating a negative velocity, thus moving left.... As we approach f the slope is nearing zero indicating that we are coming to a stop by the time F is reached.)

2a. The object is at rest during B and D... the slope is zero during these sections indicating zero velocity. $2 b$. The velocity during section C is equal to the slope of that section, the rise was -2 m and the run was 1 s so the slope was $-2 \mathrm{~m} / \mathrm{s}$.
2c.

2d. Since the given graph was Position vs. Time and displacement is defined as the change in position..... the final position was $-2 m$ and the initial position was $-1 m$ so the change in position is $-2 m-(-1 m)=-1 m$.. the
answer is -1 m .
2 e . The total distance is 7 m . (it moved 3 m during section A, moved $2 m$ during section C, and moved $2 m$ during section E .)

3a. The displacement is found by finding the area "under the curve." Rectangle a has an area of 6 m , Triangle B and area of $2 m$, Triangle C $-2 m$, Rectangle $D-2 m$, and Triangle E $-1 \mathrm{~m} . .$. . so the displacement is +3 m when those quantities are summed. You must pay attention to the signs because displacement is a vector so direction matters.
3b. The total distance is found by adding the lengths found when finding the area.... But ignoring the negative signs because distance is a scalar and direction doesn't matter.
3c. The slope of a velocity time graph is the acceleration. Wherever it is steepest is where the acceleration has the greatest magnitude... so during section $\mathrm{E}2 \mathrm{~m} / \mathrm{s}^{2}$.
3d. The object changes direction when its velocity changes sign, so right at 5 seconds. Before five seconds it had a positive velocity, after 5 seconds it had a negative velocity.
3e. The object is moving to the left if its velocity is negative. Look at the graph. It is moving to the left during sections C, D, and $E . .$. because that is when it has negative velocities according to the graph scale.
$3 f$.

So... hopefully linear for 0-3 seconds indicating constant velocity.... Also linear from 7-8 seconds for the same reason. Curvy elsewhere indicating we have acceleration.

III LAB QUESTIONS
A. a gate velocity.

$$
V_{A}=\frac{\Delta X}{T_{A}}=\frac{1.5 \mathrm{~cm}}{0.0309 \mathrm{~s}}=48.5 \frac{\mathrm{~cm}}{\mathrm{~s}}
$$

b. B GATE VELOLITY

$$
V_{B}=\frac{\Delta X}{t_{B}}=\frac{1.5 \mathrm{~cm}}{0.01 \mathrm{cos}} 150 \frac{\mathrm{~cm}}{\mathrm{~s}}
$$

C. Average velocity

$$
\begin{aligned}
& \begin{array}{l}
\text { COOPS CTOTALTIME } \\
\text { FORT! } \\
\text { THAT! }
\end{array} \\
& \text { so } V_{\text {arg }}=\frac{V_{A}+V_{B}}{2}=\frac{48.5+150}{2}=99.25 \frac{\mathrm{~cm}}{\mathrm{~s}}
\end{aligned}
$$

d. Acceleration

$$
\begin{aligned}
& \text { aeration } \\
& a=\frac{\Delta V}{T}=\frac{V_{B}-V_{A}}{T_{A B}}=\frac{150-485}{\square} \leftarrow D A R N I T \text { ! }
\end{aligned}
$$

$$
\begin{aligned}
& \text { so }
\end{aligned}
$$

$$
\begin{aligned}
& 335.8 \frac{\mathrm{~cm}}{\mathrm{~s}^{2}}=a
\end{aligned}
$$

e.
 just a rough sketch... ideally slope would correspond to acceleration, but without a scale... oh well

Problem Solving

$$
\begin{aligned}
& t=? \\
& \Delta y=v_{0} t+\frac{1}{2} a t^{2} \\
& -2=15 t+\frac{1}{2}(-9.8) t^{2} \\
& 0=2+15 t-4.9 t^{2} \\
& \text { Solve for time } \\
& \text { by using the } \\
& \text { QUADRATIC FORMULA } \\
& \text { or by using your } \\
& \text { graphing calculator. } \\
& t=3.19 \mathrm{~S} \text { ONLTTHE } \text { POSsE } \\
& \text { ROOT MAKES } \\
& \text { PART } 2 \text { IS THE ROcKET } \\
& \text { SLOWING DOWN BLASE } \\
& \text { IT 工 } 工 \text { IN FREE FALL }
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{ll}
\Delta y=? \\
V_{0}=900 \mathrm{~m} / \mathrm{s} & 0=900^{2}+2(-9.8) \Delta y \\
413265 \mathrm{~m} \\
\Delta y
\end{array} \\
& \text { ROCKET FIRING. } \\
& a=+30 \mathrm{~m} / \mathrm{s}^{2} \\
& t=30 \mathrm{~s} \\
& \mathrm{~V}_{0}=\text { © } \frac{\mathrm{m}}{3} \\
& \Delta y=\text { ? } \\
& \Delta y=y_{0} t^{2}+\frac{1}{2} a t^{2} \\
& \Delta y=\frac{1}{2}(30)(30)^{2} \\
& =\frac{13500 \mathrm{~m}}{\uparrow} \\
& \text { This is how much } \\
& \text { alfitcde is gained } \\
& \text { while the rockets fire. } \\
& \text { a. TOTALALT }=13500 \mathrm{~m}+41326.5 \mathrm{~m} \\
& =54827 \mathrm{~m}
\end{aligned}
$$

$$
\begin{gathered}
66 . \\
\begin{array}{c}
a=-9.8 \mathrm{~m} / 2 \\
v_{0}=20 \mathrm{~m} / 2
\end{array} \left\lvert\, \begin{array}{l}
v_{f}^{2}=v_{0}^{2}+2 a \Delta y \\
v_{f}=\sqrt{v_{0}^{2}+2 a \Delta y y} \\
v_{f}=? \\
v_{f}=\sqrt{(20)^{2}+2(-9.8)(-10)} \\
\frac{v_{f}=-24.4 \frac{\mathrm{~m}}{\mathrm{~s}}}{} \\
b_{0} t=? \\
\Delta y=v_{0} t+\frac{1}{2} a t^{2} \\
-10=20 t+\frac{1}{2}(-9.8) t^{2} \\
0=10+20+-4.9+2 \\
t=4.53 \mathrm{~s}
\end{array}\right.
\end{gathered}
$$

YES，YOU COULD HAVE USE THE V_{f} YOU FOUND IN PART A．．．．BUT WHAT IF YOU COT THAT WRONG？．．．ITS NICE TO SSE GIVENS
THAT HAEM BEN THAT HAN EST ARON WEST MESSED AROND WITH．

$$
\hat{\vdots} t=?
$$

$$
a=-9.8 \mathrm{~m} / \mathrm{s}^{2}
$$

b．Total Time in ar

$$
\begin{aligned}
& \text { Time in ar } \\
& t_{\text {total }}=30 \text { Time for rocket to cone } \\
& \text { back down } \\
& \text { after it runs }
\end{aligned}
$$

$$
v_{0}=900 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& \text { back dour } \\
& \text { after it on }
\end{aligned}
$$

$$
\begin{aligned}
& \text { back down } \\
& \text { after it runs } \\
& \text { out of fuel }
\end{aligned}
$$

$$
\Delta y=-13500 \mathrm{~m}
$$

$$
\begin{aligned}
& =30+197.65 \\
& =227,65
\end{aligned}
$$

out of fuel

$$
\begin{aligned}
& \Delta y=-13500 \mathrm{~m} \\
& \Delta y=v_{0}++\frac{1}{2} a+2 \\
& -13500=900+-4.9 t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Delta y=v_{0} t+\frac{1}{2} a+9 \\
& -13500=900+-4.99^{2} \\
& t=197.6
\end{aligned}
$$

$$
t=197.6 \mathrm{~s}
$$

